-- ====================================================================== -- UART transmitter -- Copyright (C) 2020 Torsten Meissner ------------------------------------------------------------------------- -- This program is free software; you can redistribute it and/or -- modify it under the terms of the GNU Lesser General Public -- License as published by the Free Software Foundation; either -- version 3 of the License, or (at your option) any later version. -- -- This program is distributed in the hope that it will be useful, -- but WITHOUT ANY WARRANTY; without even the implied warranty of -- MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU -- Lesser General Public License for more details. -- -- You should have received a copy of the GNU Lesser General Public License -- along with this program; if not, write to the Free Software Foundation, -- Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA -- ====================================================================== library ieee; use ieee.std_logic_1164.all; use ieee.numeric_std.all; entity UartTx is generic ( DATA_LENGTH : positive range 5 to 9 := 8; PARITY : boolean := true; CLK_DIV : natural := 10 ); port ( reset_n_i : in std_logic; -- async reset clk_i : in std_logic; -- clock data_i : in std_logic_vector(DATA_LENGTH-1 downto 0); -- data input valid_i : in std_logic; -- input data valid accept_o : out std_logic; -- inpit data accepted tx_o : out std_logic -- uart tx data output ); end entity UartTx; architecture rtl of UartTx is function odd_parity (data : in std_logic_vector(DATA_LENGTH-1 downto 0)) return std_logic is variable v_data : std_logic := '0'; begin for i in data'range loop v_data := v_data xor data(i); end loop; return not v_data; end function odd_parity; function to_integer (data : in boolean) return integer is begin if data then return 1; else return 0; end if; end function to_integer; type t_uart_state is (IDLE, SEND); signal s_uart_state : t_uart_state; signal s_data : std_logic_vector(DATA_LENGTH+1+to_integer(PARITY) downto 0); signal s_clk_en : boolean; begin ClkDivP : process (clk_i, reset_n_i) is variable v_clk_cnt : natural range 0 to CLK_DIV-1; begin if (reset_n_i = '0') then s_clk_en <= false; v_clk_cnt := CLK_DIV-1; elsif (rising_edge(clk_i)) then if (s_uart_state = IDLE) then v_clk_cnt := CLK_DIV-2; s_clk_en <= false; elsif (s_uart_state = SEND) then if (v_clk_cnt = 0) then v_clk_cnt := CLK_DIV-1; s_clk_en <= true; else v_clk_cnt := v_clk_cnt - 1; s_clk_en <= false; end if; end if; end if; end process ClkDivP; TxP : process (clk_i, reset_n_i) is variable v_bit_cnt : natural range 0 to s_data'length-1; begin if (reset_n_i = '0') then s_uart_state <= IDLE; s_data <= (0 => '1', others => '0'); accept_o <= '0'; v_bit_cnt := 0; elsif (rising_edge(clk_i)) then FsmL : case s_uart_state is when IDLE => accept_o <= '1'; v_bit_cnt := s_data'length-1; if (valid_i = '1' and accept_o = '1') then accept_o <= '0'; if (PARITY) then s_data <= '1' & odd_parity(data_i) & data_i & '0'; else s_data <= '1' & data_i & '0'; end if; s_uart_state <= SEND; end if; when SEND => if (s_clk_en) then s_data <= '1' & s_data(s_data'length-1 downto 1); if (v_bit_cnt = 0) then accept_o <= '1'; s_uart_state <= IDLE; else v_bit_cnt := v_bit_cnt - 1; end if; end if; end case; end if; end process TxP; tx_o <= s_data(0); end architecture rtl;