-- ====================================================================== -- UART Receiver -- Copyright (C) 2020 Torsten Meissner ------------------------------------------------------------------------- -- This program is free software; you can redistribute it and/or -- modify it under the terms of the GNU Lesser General Public -- License as published by the Free Software Foundation; either -- version 3 of the License, or (at your option) any later version. -- -- This program is distributed in the hope that it will be useful, -- but WITHOUT ANY WARRANTY; without even the implied warranty of -- MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU -- Lesser General Public License for more details. -- -- You should have received a copy of the GNU Lesser General Public License -- along with this program; if not, write to the Free Software Foundation, -- Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA -- ====================================================================== library ieee; use ieee.std_logic_1164.all; use ieee.numeric_std.all; library libvhdl; use libvhdl.UtilsP.all; entity UartRx is generic ( DATA_LENGTH : positive range 5 to 9 := 8; PARITY : boolean := true; CLK_DIV : natural := 10 ); port ( reset_n_i : in std_logic; -- async reset clk_i : in std_logic; -- clock data_o : out std_logic_vector(DATA_LENGTH-1 downto 0); -- data output error_o : out std_logic; -- rx error valid_o : out std_logic; -- output data valid accept_i : in std_logic; -- output data accepted rx_i : in std_logic -- uart rx input ); end entity UartRx; architecture rtl of UartRx is function odd_parity (data : in std_logic_vector(DATA_LENGTH-1 downto 0)) return std_logic is begin return not xor_reduce(data); end function odd_parity; function to_integer (data : in boolean) return integer is begin if data then return 1; else return 0; end if; end function to_integer; type t_uart_state is (IDLE, RECEIVE, VALID); signal s_uart_state : t_uart_state; signal s_data : std_logic_vector(DATA_LENGTH+1+to_integer(PARITY) downto 0); signal s_clk_en : boolean; begin ClkDivP : process (clk_i, reset_n_i) is variable v_clk_cnt : natural range 0 to CLK_DIV-1; begin if (reset_n_i = '0') then s_clk_en <= false; v_clk_cnt := CLK_DIV-1; elsif (rising_edge(clk_i)) then s_clk_en <= false; if (s_uart_state = IDLE) then v_clk_cnt := CLK_DIV-2; elsif (s_uart_state = RECEIVE) then if (v_clk_cnt = 0) then v_clk_cnt := CLK_DIV-1; else v_clk_cnt := v_clk_cnt - 1; end if; if (v_clk_cnt = CLK_DIV/2-1) then s_clk_en <= true; end if; end if; end if; end process ClkDivP; RxP : process (clk_i, reset_n_i) is variable v_bit_cnt : natural range 0 to s_data'length-1; begin if (reset_n_i = '0') then s_uart_state <= IDLE; s_data <= (others => '0'); valid_o <= '0'; v_bit_cnt := 0; elsif (rising_edge(clk_i)) then FsmL : case s_uart_state is when IDLE => valid_o <= '0'; v_bit_cnt := s_data'length-1; if (rx_i = '0') then s_uart_state <= RECEIVE; end if; when RECEIVE => if (s_clk_en) then s_data <= rx_i & s_data(s_data'length-1 downto 1); if (v_bit_cnt = 0) then valid_o <= '1'; s_uart_state <= VALID; else v_bit_cnt := v_bit_cnt - 1; end if; end if; when VALID => valid_o <= '1'; if (valid_o = '1' and accept_i = '1') then valid_o <= '0'; s_uart_state <= IDLE; end if; end case; end if; end process RxP; ParityG : if PARITY generate data_o <= s_data(s_data'length-3 downto 1); error_o <= '1' when odd_parity(s_data(s_data'length-3 downto 1)) /= s_data(s_data'length-2) or s_data(s_data'length-1) = '0' else '0'; else generate data_o <= s_data(s_data'length-2 downto 1); error_o <= '1' when s_data(s_data'length-1) = '0' else '0'; end generate ParityG; end architecture rtl;