library ieee; use ieee.std_logic_1164.all; entity SpiSlaveE is generic ( G_DATA_WIDTH : positive := 8; --* data bus width G_SPI_CPOL : natural range 0 to 1 := 0; --* SPI clock polarity G_SPI_CPHA : natural range 0 to 1 := 0 --* SPI clock phase ); port ( --+ system if Reset_n_i : in std_logic; Clk_i : in std_logic; --+ SPI slave if SpiSclk_i : in std_logic; SpiSte_i : in std_logic; SpiMosi_i : in std_logic; SpiMiso_o : out std_logic; --+ local VAI if Data_i : in std_logic_vector(G_DATA_WIDTH-1 downto 0); DataValid_i : in std_logic; DataAccept_o : out std_logic; Data_o : out std_logic_vector(G_DATA_WIDTH-1 downto 0); DataValid_o : out std_logic; DataAccept_i : in std_logic ); end entity SpiSlaveE; architecture rtl of SpiSlaveE is type t_spi_state is (IDLE, TRANSFER, STORE); signal s_spi_state : t_spi_state; signal s_send_register : std_logic_vector(G_DATA_WIDTH-1 downto 0); signal s_recv_register : std_logic_vector(G_DATA_WIDTH-1 downto 0); signal s_sclk_d : std_logic_vector(2 downto 0); signal s_ste_d : std_logic_vector(2 downto 0); signal s_mosi_d : std_logic_vector(2 downto 0); signal s_miso : std_logic; signal s_data_valid : std_logic; signal s_transfer_valid : boolean; signal s_sclk_rising : boolean; signal s_sclk_falling : boolean; signal s_read_edge : boolean; signal s_write_edge : boolean; alias a_ste : std_logic is s_ste_d(s_ste_d'left); alias a_mosi : std_logic is s_mosi_d(s_mosi_d'left); begin --* help signals for edge detection on sclk s_sclk_rising <= true when s_sclk_d(2 downto 1) = "01" else false; s_sclk_falling <= true when s_sclk_d(2 downto 1) = "10" else false; s_read_edge <= s_sclk_rising when G_SPI_CPOL = G_SPI_CPHA else s_sclk_falling; s_write_edge <= s_sclk_falling when G_SPI_CPOL = G_SPI_CPHA else s_sclk_rising; --* Sync asynchronous SPI inputs with 3 stage FF line --* We use 3 FF because of edge detection on sclk line --* Mosi & ste are also registered with 3 FF to stay in --* sync with registered sclk SpiSyncP : process (Reset_n_i, Clk_i) is begin if (Reset_n_i = '0') then if (G_SPI_CPOL = 0) then s_sclk_d <= (others => '0'); else s_sclk_d <= (others => '1'); end if; s_ste_d <= (others => '1'); s_mosi_d <= (others => '0'); elsif rising_edge(Clk_i) then s_sclk_d <= s_sclk_d(1 downto 0) & SpiSclk_i; s_ste_d <= s_ste_d(1 downto 0) & SpiSte_i; s_mosi_d <= s_mosi_d(1 downto 0) & SpiMosi_i; end if; end process SpiSyncP; --* Save local data input when new data is provided and --* we're not inside a running SPI transmission SendRegisterP : process (Reset_n_i, Clk_i) is begin if (Reset_n_i = '0') then s_send_register <= (others => '0'); DataAccept_o <= '0'; elsif rising_edge(Clk_i) then DataAccept_o <= '0'; if (DataValid_i = '1' and s_spi_state = IDLE) then s_send_register <= Data_i; DataAccept_o <= '1'; end if; end if; end process SendRegisterP; --* Spi slave control FSM SpiControlP : process (Reset_n_i, Clk_i) is variable v_bit_counter : natural range 0 to G_DATA_WIDTH-1; begin if (Reset_n_i = '0') then s_miso <= '0'; s_recv_register <= (others => '0'); v_bit_counter := G_DATA_WIDTH-1; s_transfer_valid <= false; s_spi_state <= IDLE; elsif rising_edge(Clk_i) then case s_spi_state is when IDLE => s_miso <= '0'; s_recv_register <= (others => '0'); v_bit_counter := G_DATA_WIDTH-1; s_transfer_valid <= false; if (a_ste = '0') then if (G_SPI_CPHA = 0) then s_miso <= s_send_register(v_bit_counter); end if; s_spi_state <= TRANSFER; end if; when TRANSFER => if s_read_edge then s_recv_register(v_bit_counter) <= a_mosi; if (v_bit_counter = 0) then s_spi_state <= STORE; else v_bit_counter := v_bit_counter - 1; end if; elsif s_write_edge then s_miso <= s_send_register(v_bit_counter); else if (a_ste = '1') then s_spi_state <= IDLE; end if; end if; when STORE => if (a_ste = '1') then s_transfer_valid <= true; s_spi_state <= IDLE; end if; when others => s_spi_state <= IDLE; end case; end if; end process SpiControlP; --* Provide received SPI data to local interface --* Output data is overwritten if it isn't fetched --* until next finished SPI transmission RecvRegisterP : process (Reset_n_i, Clk_i) is begin if (Reset_n_i = '0') then Data_o <= (others => '0'); s_data_valid <= '0'; elsif rising_edge(Clk_i) then if (s_transfer_valid) then Data_o <= s_recv_register; s_data_valid <= '1'; end if; if (DataAccept_i = '1' and s_data_valid = '1') then s_data_valid <= '0'; end if; end if; end process RecvRegisterP; --+ Output port connections DataValid_o <= s_data_valid; SpiMiso_o <= 'Z' when SpiSte_i = '1' else s_miso; -- psl default clock is rising_edge(Clk_i); -- -- psl assert always (s_spi_state = IDLE or s_spi_state = TRANSFER or s_spi_state = STORE); -- psl assert always (s_data_valid and DataAccept_i) -> next not(s_data_valid); end architecture rtl;