|
|
- library ieee;
- use ieee.std_logic_1164.all;
- use ieee.numeric_std.all;
-
-
-
- entity SpiSlaveE is
- generic (
- G_DATA_WIDTH : positive := 8; --* data bus width
- G_DATA_DIR : natural range 0 to 1 := 0; --* start from lsb/msb 0/1
- G_SPI_CPOL : natural range 0 to 1 := 0; --* SPI clock polarity
- G_SPI_CPHA : natural range 0 to 1 := 0 --* SPI clock phase
- );
- port (
- --+ system if
- Reset_n_i : in std_logic;
- Clk_i : in std_logic;
- --+ SPI slave if
- SpiSclk_i : in std_logic;
- SpiSte_i : in std_logic;
- SpiMosi_i : in std_logic;
- SpiMiso_o : out std_logic;
- --+ local VAI if
- Data_i : in std_logic_vector(G_DATA_WIDTH-1 downto 0);
- DataValid_i : in std_logic;
- DataAccept_o : out std_logic;
- Data_o : out std_logic_vector(G_DATA_WIDTH-1 downto 0);
- DataValid_o : out std_logic;
- DataAccept_i : in std_logic
- );
- end entity SpiSlaveE;
-
-
-
- architecture rtl of SpiSlaveE is
-
-
- type t_spi_state is (IDLE, TRANSFER, STORE);
- signal s_spi_state : t_spi_state;
-
- signal s_send_register : std_logic_vector(G_DATA_WIDTH-1 downto 0);
- signal s_recv_register : std_logic_vector(G_DATA_WIDTH-1 downto 0);
-
- signal s_sclk_d : std_logic_vector(2 downto 0);
- signal s_ste_d : std_logic_vector(2 downto 0);
- signal s_mosi_d : std_logic_vector(2 downto 0);
-
- signal s_miso : std_logic;
-
- signal s_data_valid : std_logic;
- signal s_transfer_valid : boolean;
-
- signal s_sclk_rising : boolean;
- signal s_sclk_falling : boolean;
- signal s_read_edge : boolean;
- signal s_write_edge : boolean;
-
- alias a_ste : std_logic is s_ste_d(s_ste_d'left);
- alias a_mosi : std_logic is s_mosi_d(s_mosi_d'left);
-
- constant C_BIT_COUNTER_START : natural := (G_DATA_WIDTH-1) * G_DATA_DIR;
- constant C_BIT_COUNTER_END : natural := (G_DATA_WIDTH-1) * to_integer(not(to_unsigned(G_DATA_DIR, 1)));
-
-
- begin
-
-
- --* help signals for edge detection on sclk
- s_sclk_rising <= true when s_sclk_d(2 downto 1) = "01" else false;
- s_sclk_falling <= true when s_sclk_d(2 downto 1) = "10" else false;
-
- s_read_edge <= s_sclk_rising when G_SPI_CPOL = G_SPI_CPHA else s_sclk_falling;
- s_write_edge <= s_sclk_falling when G_SPI_CPOL = G_SPI_CPHA else s_sclk_rising;
-
-
- --* Sync asynchronous SPI inputs with 3 stage FF line
- --* We use 3 FF because of edge detection on sclk line
- --* Mosi & ste are also registered with 3 FF to stay in
- --* sync with registered sclk
- SpiSyncP : process (Reset_n_i, Clk_i) is
- begin
- if (Reset_n_i = '0') then
- if (G_SPI_CPOL = 0) then
- s_sclk_d <= (others => '0');
- else
- s_sclk_d <= (others => '1');
- end if;
- s_ste_d <= (others => '1');
- s_mosi_d <= (others => '0');
- elsif rising_edge(Clk_i) then
- s_sclk_d <= s_sclk_d(1 downto 0) & SpiSclk_i;
- s_ste_d <= s_ste_d(1 downto 0) & SpiSte_i;
- s_mosi_d <= s_mosi_d(1 downto 0) & SpiMosi_i;
- end if;
- end process SpiSyncP;
-
-
- --* Save local data input when new data is provided and
- --* we're not inside a running SPI transmission
- SendRegisterP : process (Reset_n_i, Clk_i) is
- begin
- if (Reset_n_i = '0') then
- s_send_register <= (others => '0');
- DataAccept_o <= '0';
- elsif rising_edge(Clk_i) then
- DataAccept_o <= '0';
- if (DataValid_i = '1' and s_spi_state = IDLE) then
- s_send_register <= Data_i;
- DataAccept_o <= '1';
- end if;
- end if;
- end process SendRegisterP;
-
-
- --* Spi slave control FSM
- SpiControlP : process (Reset_n_i, Clk_i) is
- variable v_bit_counter : natural range 0 to G_DATA_WIDTH-1;
- begin
- if (Reset_n_i = '0') then
- s_miso <= '0';
- s_recv_register <= (others => '0');
- v_bit_counter := C_BIT_COUNTER_START;
- s_transfer_valid <= false;
- s_spi_state <= IDLE;
- elsif rising_edge(Clk_i) then
- case s_spi_state is
-
- when IDLE =>
- s_miso <= '0';
- s_recv_register <= (others => '0');
- v_bit_counter := C_BIT_COUNTER_START;
- s_transfer_valid <= false;
- if (a_ste = '0') then
- if (G_SPI_CPHA = 0) then
- s_miso <= s_send_register(v_bit_counter);
- end if;
- s_spi_state <= TRANSFER;
- end if;
-
- when TRANSFER =>
- if s_read_edge then
- s_recv_register(v_bit_counter) <= a_mosi;
- if (v_bit_counter = C_BIT_COUNTER_END) then
- s_spi_state <= STORE;
- else
- if (G_DATA_DIR = 0) then
- v_bit_counter := v_bit_counter + 1;
- else
- v_bit_counter := v_bit_counter - 1;
- end if;
- end if;
- elsif s_write_edge then
- s_miso <= s_send_register(v_bit_counter);
- else
- if (a_ste = '1') then
- s_spi_state <= IDLE;
- end if;
- end if;
-
- when STORE =>
- if (a_ste = '1') then
- s_transfer_valid <= true;
- s_spi_state <= IDLE;
- end if;
-
- when others =>
- s_spi_state <= IDLE;
-
- end case;
- end if;
- end process SpiControlP;
-
-
- --* Provide received SPI data to local interface
- --* Output data is overwritten if it isn't fetched
- --* until next finished SPI transmission
- RecvRegisterP : process (Reset_n_i, Clk_i) is
- begin
- if (Reset_n_i = '0') then
- Data_o <= (others => '0');
- s_data_valid <= '0';
- elsif rising_edge(Clk_i) then
- if (s_transfer_valid) then
- Data_o <= s_recv_register;
- s_data_valid <= '1';
- end if;
- if (DataAccept_i = '1' and s_data_valid = '1') then
- s_data_valid <= '0';
- end if;
- end if;
- end process RecvRegisterP;
-
-
- --+ Output port connections
- DataValid_o <= s_data_valid;
- SpiMiso_o <= 'Z' when SpiSte_i = '1' else s_miso;
-
-
- -- psl default clock is rising_edge(Clk_i);
- --
- -- psl assert always (s_spi_state = IDLE or s_spi_state = TRANSFER or s_spi_state = STORE);
- -- psl assert always (s_data_valid and DataAccept_i) -> next not(s_data_valid);
-
-
- end architecture rtl;
|