Library of reusable VHDL components
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 

395 lines
13 KiB

library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;
--+ including vhdl 2008 libraries
--+ These lines can be commented out when using
--+ a simulator with built-in VHDL 2008 support
library ieee_proposed;
use ieee_proposed.standard_additions.all;
use ieee_proposed.std_logic_1164_additions.all;
use ieee_proposed.numeric_std_additions.all;
library osvvm;
use osvvm.RandomPkg.all;
library libvhdl;
use libvhdl.AssertP.all;
use libvhdl.SimP.all;
use libvhdl.QueueP.all;
entity SpiT is
end entity SpiT;
architecture sim of SpiT is
component SpiMasterE is
generic (
G_DATA_WIDTH : positive := 8;
G_DATA_DIR : natural range 0 to 1 := 0;
G_SPI_CPOL : natural range 0 to 1 := 0;
G_SPI_CPHA : natural range 0 to 1 := 0;
G_SCLK_DIVIDER : positive range 6 to positive'high := 10
);
port (
--+ system if
Reset_n_i : in std_logic;
Clk_i : in std_logic;
--+ SPI slave if
SpiSclk_o : out std_logic;
SpiSte_o : out std_logic;
SpiMosi_o : out std_logic;
SpiMiso_i : in std_logic;
--+ local VAI if
Data_i : in std_logic_vector(G_DATA_WIDTH-1 downto 0);
DataValid_i : in std_logic;
DataAccept_o : out std_logic;
Data_o : out std_logic_vector(G_DATA_WIDTH-1 downto 0);
DataValid_o : out std_logic;
DataAccept_i : in std_logic
);
end component SpiMasterE;
component SpiSlaveE is
generic (
G_DATA_WIDTH : positive := 8;
G_DATA_DIR : natural range 0 to 1 := 0;
G_SPI_CPOL : natural range 0 to 1 := 0;
G_SPI_CPHA : natural range 0 to 1 := 0
);
port (
--+ system if
Reset_n_i : in std_logic;
Clk_i : in std_logic;
--+ SPI slave if
SpiSclk_i : in std_logic;
SpiSte_i : in std_logic;
SpiMosi_i : in std_logic;
SpiMiso_o : out std_logic;
--+ local VAI if
Data_i : in std_logic_vector(G_DATA_WIDTH-1 downto 0);
DataValid_i : in std_logic;
DataAccept_o : out std_logic;
Data_o : out std_logic_vector(G_DATA_WIDTH-1 downto 0);
DataValid_o : out std_logic;
DataAccept_i : in std_logic
);
end component SpiSlaveE;
--* testbench global clock period
constant C_PERIOD : time := 5 ns;
--* SPI data transfer data width
constant C_DATA_WIDTH : natural := 8;
--* testbench global clock
signal s_clk : std_logic := '0';
--* testbench global reset
signal s_reset_n : std_logic := '0';
--* SPI mode range subtype
subtype t_spi_mode is natural range 0 to 3;
--+ test done array with entry for each test
signal s_test_done : boolean_vector(t_spi_mode'low to 4*t_spi_mode'high+3) := (others => false);
begin
--* testbench global clock
s_clk <= not(s_clk) after C_PERIOD/2 when not(and_reduce(s_test_done)) else '0';
--* testbench global reset
s_reset_n <= '1' after 100 ns;
--* Generate tests for both direction
DataDirectionG : for direction in 0 to 1 generate
--* Generate SpiMasterE tests for all 4 modes
SpiMastersG : for mode in t_spi_mode'low to t_spi_mode'high generate
signal s_sclk : std_logic;
signal s_ste : std_logic;
signal s_mosi : std_logic;
signal s_miso : std_logic;
signal s_din : std_logic_vector(C_DATA_WIDTH-1 downto 0);
signal s_din_valid : std_logic;
signal s_din_accept : std_logic;
signal s_dout : std_logic_vector(C_DATA_WIDTH-1 downto 0);
signal s_dout_valid : std_logic;
signal s_dout_accept : std_logic;
shared variable sv_mosi_queue : t_list_queue;
shared variable sv_miso_queue : t_list_queue;
begin
--* Stimuli generator and BFM for the valid-accept interface
--* on the local data input of the DUT
--*
--* Generates random stimuli and serves it to the
--* valid-accept interface at the input of the DUT
--*
--* The stimuli data is also pushed into the mosi queue
--* which serves as simple abstract reference model
--* of the SPI transmit (master -> slave) channel
SpiMasterStimP : process is
variable v_random : RandomPType;
begin
v_random.InitSeed(v_random'instance_name);
s_din_valid <= '0';
s_din <= (others => '0');
wait until s_reset_n = '1';
for i in 0 to integer'(2**C_DATA_WIDTH-1) loop
s_din <= v_random.RandSlv(C_DATA_WIDTH);
s_din_valid <= '1';
wait until rising_edge(s_clk) and s_din_accept = '1';
s_din_valid <= '0';
sv_mosi_queue.push(s_din);
wait until rising_edge(s_clk);
end loop;
wait;
end process SpiMasterStimP;
--* DUT: SpiMasterE component
i_SpiMasterE : SpiMasterE
generic map (
G_DATA_WIDTH => C_DATA_WIDTH,
G_DATA_DIR => direction,
G_SPI_CPOL => mode / 2,
G_SPI_CPHA => mode mod 2,
G_SCLK_DIVIDER => 10
)
port map (
--+ system if
Reset_n_i => s_reset_n,
Clk_i => s_clk,
--+ SPI slave if
SpiSclk_o => s_sclk,
SpiSte_o => s_ste,
SpiMosi_o => s_mosi,
SpiMiso_i => s_miso,
--+ local VAI if
Data_i => s_din,
DataValid_i => s_din_valid,
DataAccept_o => s_din_accept,
Data_o => s_dout,
DataValid_o => s_dout_valid,
DataAccept_i => s_dout_accept
);
--* Checker and BFM for the valid-accept interface
--* on the local data output of the DUT
--*
--* Reads the output of the DUT and compares it to
--* data popped from the miso queue which serves as
--* simple abstract reference model of the SPI receive
--* (slave -> master) channel
SpiMasterCheckP : process is
variable v_queue_data : std_logic_vector(C_DATA_WIDTH-1 downto 0) := (others => '0');
begin
s_dout_accept <= '0';
wait until s_reset_n = '1';
for i in 0 to integer'(2**C_DATA_WIDTH-1) loop
wait until rising_edge(s_clk) and s_dout_valid = '1';
s_dout_accept <= '1';
sv_miso_queue.pop(v_queue_data);
assert_equal(s_dout, v_queue_data);
wait until rising_edge(s_clk);
s_dout_accept <= '0';
end loop;
report "INFO: SpiMaster (direction=" & to_string(direction) & ", mode=" & to_string(mode) & ") test successfully";
s_test_done(mode+direction*4) <= true;
wait;
end process SpiMasterCheckP;
--* Stimuli generator and BFM for the SPI slave
--* interface on the SPI miso input of the DUT
--*
--* Generates random stimuli and serves it to the
--* SPI interface at the input of the DUT
--*
--* The stimuli data is also pushed into the miso queue
--* which serves as simple abstract reference model
--* of the SPI receive (slave -> master) channel
--*
--* Furthermore the data received by the SPI slave BFM
--* is checked against data popped from the mosi queue
--* which serves as simple abstract reference model of
--* the SPI receive (master -> slave) channel
SpiSlaveP : process is
variable v_send_data : std_logic_vector(C_DATA_WIDTH-1 downto 0) := (others => '0');
variable v_receive_data : std_logic_vector(C_DATA_WIDTH-1 downto 0) := (others => '0');
variable v_queue_data : std_logic_vector(C_DATA_WIDTH-1 downto 0) := (others => '0');
variable v_random : RandomPType;
begin
v_random.InitSeed(v_random'instance_name);
s_miso <= 'Z';
wait until s_reset_n = '1';
for i in 0 to integer'(2**C_DATA_WIDTH-1) loop
v_send_data := v_random.RandSlv(C_DATA_WIDTH);
sv_miso_queue.push(v_send_data);
spi_slave (data_in => v_send_data,
data_out => v_receive_data,
sclk => s_sclk,
ste => s_ste,
mosi => s_mosi,
miso => s_miso,
dir => direction,
cpol => mode / 2,
cpha => mode mod 2
);
sv_mosi_queue.pop(v_queue_data);
assert_equal(v_receive_data, v_queue_data);
end loop;
wait;
end process SpiSlaveP;
end generate SpiMastersG;
--* Generate SpiMasterE tests for all 4 modes
SpiSlavesG : for mode in t_spi_mode'low to t_spi_mode'high generate
signal s_sclk : std_logic;
signal s_ste : std_logic;
signal s_mosi : std_logic;
signal s_miso : std_logic;
signal s_din : std_logic_vector(C_DATA_WIDTH-1 downto 0);
signal s_din_valid : std_logic;
signal s_din_accept : std_logic;
signal s_dout : std_logic_vector(C_DATA_WIDTH-1 downto 0);
signal s_dout_valid : std_logic;
signal s_dout_accept : std_logic;
shared variable sv_mosi_queue : t_list_queue;
shared variable sv_miso_queue : t_list_queue;
begin
--* Unit test of spi master procedure, checks all combinations
--* of cpol & cpha against spi slave procedure
SpiMasterP : process is
variable v_send_data : std_logic_vector(C_DATA_WIDTH-1 downto 0) := (others => '0');
variable v_receive_data : std_logic_vector(C_DATA_WIDTH-1 downto 0) := (others => '0');
variable v_queue_data : std_logic_vector(C_DATA_WIDTH-1 downto 0) := (others => '0');
variable v_random : RandomPType;
begin
v_random.InitSeed(v_random'instance_name);
s_sclk <= '1';
s_ste <= '1';
s_mosi <= '1';
wait until s_reset_n = '1';
for i in 0 to integer'(2**C_DATA_WIDTH-1) loop
v_send_data := v_random.RandSlv(C_DATA_WIDTH);
sv_mosi_queue.push(v_send_data);
spi_master (data_in => v_send_data,
data_out => v_receive_data,
sclk => s_sclk,
ste => s_ste,
mosi => s_mosi,
miso => s_miso,
dir => direction,
cpol => mode / 2,
cpha => mode mod 2,
period => C_PERIOD * 10
);
sv_miso_queue.pop(v_queue_data);
assert_equal(v_receive_data, v_queue_data);
end loop;
report "INFO: SpiSlave (direction=" & to_string(direction) & ", mode=" & to_string(mode) & ") test successfully";
s_test_done(mode+8+direction*4) <= true;
wait;
end process SpiMasterP;
SpiSlaveStimP : process is
variable v_random : RandomPType;
begin
v_random.InitSeed(v_random'instance_name);
s_din_valid <= '0';
s_din <= (others => '0');
wait until s_reset_n = '1';
for i in 0 to integer'(2**C_DATA_WIDTH-1) loop
s_din <= v_random.RandSlv(C_DATA_WIDTH);
s_din_valid <= '1';
wait until rising_edge(s_clk) and s_din_accept = '1';
s_din_valid <= '0';
sv_miso_queue.push(s_din);
wait until rising_edge(s_clk) and s_dout_valid = '1';
end loop;
wait;
end process SpiSlaveStimP;
i_SpiSlaveE : SpiSlaveE
generic map (
G_DATA_WIDTH => C_DATA_WIDTH,
G_DATA_DIR => direction,
G_SPI_CPOL => mode / 2,
G_SPI_CPHA => mode mod 2
)
port map (
--+ system if
Reset_n_i => s_reset_n,
Clk_i => s_clk,
--+ SPI slave if
SpiSclk_i => s_sclk,
SpiSte_i => s_ste,
SpiMosi_i => s_mosi,
SpiMiso_o => s_miso,
--+ local VAI if
Data_i => s_din,
DataValid_i => s_din_valid,
DataAccept_o => s_din_accept,
Data_o => s_dout,
DataValid_o => s_dout_valid,
DataAccept_i => s_dout_accept
);
SpiSlaveCheckP : process is
variable v_queue_data : std_logic_vector(C_DATA_WIDTH-1 downto 0) := (others => '0');
begin
s_dout_accept <= '0';
wait until s_reset_n = '1';
for i in 0 to integer'(2**C_DATA_WIDTH-1) loop
wait until rising_edge(s_clk) and s_dout_valid = '1';
s_dout_accept <= '1';
sv_mosi_queue.pop(v_queue_data);
assert_equal(s_dout, v_queue_data);
wait until rising_edge(s_clk);
s_dout_accept <= '0';
end loop;
wait;
end process SpiSlaveCheckP;
end generate SpiSlavesG;
end generate DataDirectionG;
end architecture sim;