cryptography ip-cores in vhdl / verilog
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 

336 lines
13 KiB

-- ======================================================================
-- DES encryption/decryption
-- algorithm according to FIPS 46-3 specification
-- Copyright (C) 2007 Torsten Meissner
-------------------------------------------------------------------------
-- This program is free software; you can redistribute it and/or modify
-- it under the terms of the GNU General Public License as published by
-- the Free Software Foundation; either version 2 of the License, or
-- (at your option) any later version.
-- This program is distributed in the hope that it will be useful,
-- but WITHOUT ANY WARRANTY; without even the implied warranty of
-- MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
-- GNU General Public License for more details.
-- You should have received a copy of the GNU General Public License
-- along with this program; if not, write to the Free Software
-- Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
-- ======================================================================
-- Revision 1.0 2007/02/04
-- Initial release
-- Revision 1.1 2007/02/05
-- Corrected error in use of mode register for key calculation
LIBRARY ieee;
USE ieee.std_logic_1164.all;
USE ieee.numeric_std.ALL;
USE work.des_pkg.ALL;
ENTITY des IS
PORT (
clk_i : IN std_logic; -- clock
mode_i : IN std_logic; -- des-modus: 0 = encrypt, 1 = decrypt
key_i : IN std_logic_vector(0 TO 63); -- key input
data_i : IN std_logic_vector(0 TO 63); -- data input
valid_i : IN std_logic; -- input key/data valid flag
data_o : OUT std_logic_vector(0 TO 63); -- data output
valid_o : OUT std_logic -- output data valid flag
);
END ENTITY des;
ARCHITECTURE rtl OF des IS
BEGIN
crypt : PROCESS ( clk_i ) IS
-- variables for key calculation
VARIABLE c0 : std_logic_vector(0 TO 27) := (others => '0');
VARIABLE c1 : std_logic_vector(0 TO 27) := (others => '0');
VARIABLE c2 : std_logic_vector(0 TO 27) := (others => '0');
VARIABLE c3 : std_logic_vector(0 TO 27) := (others => '0');
VARIABLE c4 : std_logic_vector(0 TO 27) := (others => '0');
VARIABLE c5 : std_logic_vector(0 TO 27) := (others => '0');
VARIABLE c6 : std_logic_vector(0 TO 27) := (others => '0');
VARIABLE c7 : std_logic_vector(0 TO 27) := (others => '0');
VARIABLE c8 : std_logic_vector(0 TO 27) := (others => '0');
VARIABLE c9 : std_logic_vector(0 TO 27) := (others => '0');
VARIABLE c10 : std_logic_vector(0 TO 27) := (others => '0');
VARIABLE c11 : std_logic_vector(0 TO 27) := (others => '0');
VARIABLE c12 : std_logic_vector(0 TO 27) := (others => '0');
VARIABLE c13 : std_logic_vector(0 TO 27) := (others => '0');
VARIABLE c14 : std_logic_vector(0 TO 27) := (others => '0');
VARIABLE c15 : std_logic_vector(0 TO 27) := (others => '0');
VARIABLE c16 : std_logic_vector(0 TO 27) := (others => '0');
VARIABLE d0 : std_logic_vector(0 TO 27) := (others => '0');
VARIABLE d1 : std_logic_vector(0 TO 27) := (others => '0');
VARIABLE d2 : std_logic_vector(0 TO 27) := (others => '0');
VARIABLE d3 : std_logic_vector(0 TO 27) := (others => '0');
VARIABLE d4 : std_logic_vector(0 TO 27) := (others => '0');
VARIABLE d5 : std_logic_vector(0 TO 27) := (others => '0');
VARIABLE d6 : std_logic_vector(0 TO 27) := (others => '0');
VARIABLE d7 : std_logic_vector(0 TO 27) := (others => '0');
VARIABLE d8 : std_logic_vector(0 TO 27) := (others => '0');
VARIABLE d9 : std_logic_vector(0 TO 27) := (others => '0');
VARIABLE d10 : std_logic_vector(0 TO 27) := (others => '0');
VARIABLE d11 : std_logic_vector(0 TO 27) := (others => '0');
VARIABLE d12 : std_logic_vector(0 TO 27) := (others => '0');
VARIABLE d13 : std_logic_vector(0 TO 27) := (others => '0');
VARIABLE d14 : std_logic_vector(0 TO 27) := (others => '0');
VARIABLE d15 : std_logic_vector(0 TO 27) := (others => '0');
VARIABLE d16 : std_logic_vector(0 TO 27) := (others => '0');
-- key variables
VARIABLE key1 : std_logic_vector(0 TO 47) := (others => '0');
VARIABLE key2 : std_logic_vector(0 TO 47) := (others => '0');
VARIABLE key3 : std_logic_vector(0 TO 47) := (others => '0');
VARIABLE key4 : std_logic_vector(0 TO 47) := (others => '0');
VARIABLE key5 : std_logic_vector(0 TO 47) := (others => '0');
VARIABLE key6 : std_logic_vector(0 TO 47) := (others => '0');
VARIABLE key7 : std_logic_vector(0 TO 47) := (others => '0');
VARIABLE key8 : std_logic_vector(0 TO 47) := (others => '0');
VARIABLE key9 : std_logic_vector(0 TO 47) := (others => '0');
VARIABLE key10 : std_logic_vector(0 TO 47) := (others => '0');
VARIABLE key11 : std_logic_vector(0 TO 47) := (others => '0');
VARIABLE key12 : std_logic_vector(0 TO 47) := (others => '0');
VARIABLE key13 : std_logic_vector(0 TO 47) := (others => '0');
VARIABLE key14 : std_logic_vector(0 TO 47) := (others => '0');
VARIABLE key15 : std_logic_vector(0 TO 47) := (others => '0');
VARIABLE key16 : std_logic_vector(0 TO 47) := (others => '0');
-- variables for left & right data blocks
VARIABLE l0 : std_logic_vector( 0 TO 31) := (others => '0');
VARIABLE l1 : std_logic_vector( 0 TO 31) := (others => '0');
VARIABLE l2 : std_logic_vector( 0 TO 31) := (others => '0');
VARIABLE l3 : std_logic_vector( 0 TO 31) := (others => '0');
VARIABLE l4 : std_logic_vector( 0 TO 31) := (others => '0');
VARIABLE l5 : std_logic_vector( 0 TO 31) := (others => '0');
VARIABLE l6 : std_logic_vector( 0 TO 31) := (others => '0');
VARIABLE l7 : std_logic_vector( 0 TO 31) := (others => '0');
VARIABLE l8 : std_logic_vector( 0 TO 31) := (others => '0');
VARIABLE l9 : std_logic_vector( 0 TO 31) := (others => '0');
VARIABLE l10 : std_logic_vector( 0 TO 31) := (others => '0');
VARIABLE l11 : std_logic_vector( 0 TO 31) := (others => '0');
VARIABLE l12 : std_logic_vector( 0 TO 31) := (others => '0');
VARIABLE l13 : std_logic_vector( 0 TO 31) := (others => '0');
VARIABLE l14 : std_logic_vector( 0 TO 31) := (others => '0');
VARIABLE l15 : std_logic_vector( 0 TO 31) := (others => '0');
VARIABLE l16 : std_logic_vector( 0 TO 31) := (others => '0');
VARIABLE r0 : std_logic_vector( 0 TO 31) := (others => '0');
VARIABLE r1 : std_logic_vector( 0 TO 31) := (others => '0');
VARIABLE r2 : std_logic_vector( 0 TO 31) := (others => '0');
VARIABLE r3 : std_logic_vector( 0 TO 31) := (others => '0');
VARIABLE r4 : std_logic_vector( 0 TO 31) := (others => '0');
VARIABLE r5 : std_logic_vector( 0 TO 31) := (others => '0');
VARIABLE r6 : std_logic_vector( 0 TO 31) := (others => '0');
VARIABLE r7 : std_logic_vector( 0 TO 31) := (others => '0');
VARIABLE r8 : std_logic_vector( 0 TO 31) := (others => '0');
VARIABLE r9 : std_logic_vector( 0 TO 31) := (others => '0');
VARIABLE r10 : std_logic_vector( 0 TO 31) := (others => '0');
VARIABLE r11 : std_logic_vector( 0 TO 31) := (others => '0');
VARIABLE r12 : std_logic_vector( 0 TO 31) := (others => '0');
VARIABLE r13 : std_logic_vector( 0 TO 31) := (others => '0');
VARIABLE r14 : std_logic_vector( 0 TO 31) := (others => '0');
VARIABLE r15 : std_logic_vector( 0 TO 31) := (others => '0');
VARIABLE r16 : std_logic_vector( 0 TO 31) := (others => '0');
-- variables for mode & valid shift registers
VARIABLE mode : std_logic_vector(0 TO 16) := (others => '0');
VARIABLE valid : std_logic_vector(0 TO 17) := (others => '0');
BEGIN
IF rising_edge( clk_i ) THEN
-- shift registers
valid(1 TO 17) := valid(0 TO 16);
valid(0) := valid_i;
mode(1 TO 16) := mode(0 TO 15);
mode(0) := mode_i;
-- output stage
valid_o <= valid(17);
data_o <= ipn( ( r16 & l16 ) );
-- 16. stage
IF mode(16) = '0' THEN
c16 := c15(1 TO 27) & c15(0);
d16 := d15(1 TO 27) & d15(0);
ELSE
c16 := c15(27) & c15(0 TO 26);
d16 := d15(27) & d15(0 TO 26);
END IF;
key16 := pc2( ( c16 & d16 ) );
l16 := r15;
r16 := l15 xor ( f( r15, key16 ) );
-- 15. stage
IF mode(15) = '0' THEN
c15 := c14(2 TO 27) & c14(0 TO 1);
d15 := d14(2 TO 27) & d14(0 TO 1);
ELSE
c15 := c14(26 TO 27) & c14(0 TO 25);
d15 := d14(26 TO 27) & d14(0 TO 25);
END IF;
key15 := pc2( ( c15 & d15 ) );
l15 := r14;
r15 := l14 xor ( f( r14, key15 ) );
-- 14. stage
IF mode(14) = '0' THEN
c14 := c13(2 TO 27) & c13(0 TO 1);
d14 := d13(2 TO 27) & d13(0 TO 1);
ELSE
c14 := c13(26 TO 27) & c13(0 TO 25);
d14 := d13(26 TO 27) & d13(0 TO 25);
END IF;
key14 := pc2( ( c14 & d14 ) );
l14 := r13;
r14 := l13 xor ( f( r13, key14 ) );
-- 13. stage
IF mode(13) = '0' THEN
c13 := c12(2 TO 27) & c12(0 TO 1);
d13 := d12(2 TO 27) & d12(0 TO 1);
ELSE
c13 := c12(26 TO 27) & c12(0 TO 25);
d13 := d12(26 TO 27) & d12(0 TO 25);
END IF;
key13 := pc2( ( c13 & d13 ) );
l13 := r12;
r13 := l12 xor ( f( r12, key13 ) );
-- 12. stage
IF mode(12) = '0' THEN
c12 := c11(2 TO 27) & c11(0 TO 1);
d12 := d11(2 TO 27) & d11(0 TO 1);
ELSE
c12 := c11(26 TO 27) & c11(0 TO 25);
d12 := d11(26 TO 27) & d11(0 TO 25);
END IF;
key12 := pc2( ( c12 & d12 ) );
l12 := r11;
r12 := l11 xor ( f( r11, key12 ) );
-- 11. stage
IF mode(11) = '0' THEN
c11 := c10(2 TO 27) & c10(0 TO 1);
d11 := d10(2 TO 27) & d10(0 TO 1);
ELSE
c11 := c10(26 TO 27) & c10(0 TO 25);
d11 := d10(26 TO 27) & d10(0 TO 25);
END IF;
key11 := pc2( ( c11 & d11 ) );
l11 := r10;
r11 := l10 xor ( f( r10, key11 ) );
-- 10. stage
IF mode(10) = '0' THEN
c10 := c9(2 TO 27) & c9(0 TO 1);
d10 := d9(2 TO 27) & d9(0 TO 1);
ELSE
c10 := c9(26 TO 27) & c9(0 TO 25);
d10 := d9(26 TO 27) & d9(0 TO 25);
END IF;
key10 := pc2( ( c10 & d10 ) );
l10 := r9;
r10 := l9 xor ( f( r9, key10 ) );
-- 9. stage
IF mode(9) = '0' THEN
c9 := c8(1 TO 27) & c8(0);
d9 := d8(1 TO 27) & d8(0);
ELSE
c9 := c8(27) & c8(0 TO 26);
d9 := d8(27) & d8(0 TO 26);
END IF;
key9 := pc2( ( c9 & d9 ) );
l9 := r8;
r9 := l8 xor ( f( r8, key9 ) );
-- 8. stage
IF mode(8) = '0' THEN
c8 := c7(2 TO 27) & c7(0 TO 1);
d8 := d7(2 TO 27) & d7(0 TO 1);
ELSE
c8 := c7(26 TO 27) & c7(0 TO 25);
d8 := d7(26 TO 27) & d7(0 TO 25);
END IF;
key8 := pc2( ( c8 & d8 ) );
l8 := r7;
r8 := l7 xor ( f( r7, key8 ) );
-- 7. stage
IF mode(7) = '0' THEN
c7 := c6(2 TO 27) & c6(0 TO 1);
d7 := d6(2 TO 27) & d6(0 TO 1);
ELSE
c7 := c6(26 TO 27) & c6(0 TO 25);
d7 := d6(26 TO 27) & d6(0 TO 25);
END IF;
key7 := pc2( ( c7 & d7 ) );
l7 := r6;
r7 := l6 xor ( f( r6, key7 ) );
-- 6. stage
IF mode(6) = '0' THEN
c6 := c5(2 TO 27) & c5(0 TO 1);
d6 := d5(2 TO 27) & d5(0 TO 1);
ELSE
c6 := c5(26 TO 27) & c5(0 TO 25);
d6 := d5(26 TO 27) & d5(0 TO 25);
END IF;
key6 := pc2( ( c6 & d6 ) );
l6 := r5;
r6 := l5 xor ( f( r5, key6 ) );
-- 5. stage
IF mode(5) = '0' THEN
c5 := c4(2 TO 27) & c4(0 TO 1);
d5 := d4(2 TO 27) & d4(0 TO 1);
ELSE
c5 := c4(26 TO 27) & c4(0 TO 25);
d5 := d4(26 TO 27) & d4(0 TO 25);
END IF;
key5 := pc2( ( c5 & d5 ) );
l5 := r4;
r5 := l4 xor ( f( r4, key5 ) );
-- 4. stage
IF mode(4) = '0' THEN
c4 := c3(2 TO 27) & c3(0 TO 1);
d4 := d3(2 TO 27) & d3(0 TO 1);
ELSE
c4 := c3(26 TO 27) & c3(0 TO 25);
d4 := d3(26 TO 27) & d3(0 TO 25);
END IF;
key4 := pc2( ( c4 & d4 ) );
l4 := r3;
r4 := l3 xor ( f( r3, key4 ) );
-- 3. stage
IF mode(3) = '0' THEN
c3 := c2(2 TO 27) & c2(0 TO 1);
d3 := d2(2 TO 27) & d2(0 TO 1);
ELSE
c3 := c2(26 TO 27) & c2(0 TO 25);
d3 := d2(26 TO 27) & d2(0 TO 25);
END IF;
key3 := pc2( ( c3 & d3 ) );
l3 := r2;
r3 := l2 xor ( f( r2, key3 ) );
-- 2. stage
IF mode(2) = '0' THEN
c2 := c1(1 TO 27) & c1(0);
d2 := d1(1 TO 27) & d1(0);
ELSE
c2 := c1(27) & c1(0 TO 26);
d2 := d1(27) & d1(0 TO 26);
END IF;
key2 := pc2( ( c2 & d2 ) );
l2 := r1;
r2 := l1 xor ( f( r1, key2 ) );
-- 1. stage
IF mode(1) = '0' THEN
c1 := c0(1 TO 27) & c0(0);
d1 := d0(1 TO 27) & d0(0);
ELSE
c1 := c0;
d1 := d0;
END IF;
key1 := pc2( ( c1 & d1 ) );
l1 := r0;
r1 := l0 xor ( f( r0, key1 ) );
-- input stage
l0 := ip( data_i )(0 TO 31);
r0 := ip( data_i )(32 TO 63);
c0 := pc1_c( key_i );
d0 := pc1_d( key_i );
END IF;
END PROCESS crypt;
END ARCHITECTURE rtl;