You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 

131 lines
5.3 KiB

\m4_TLV_version 1d: tl-x.org
\SV
// This code can be found in: https://github.com/stevehoover/LF-Building-a-RISC-V-CPU-Core/risc-v_shell.tlv
m4_include_lib(['https://raw.githubusercontent.com/stevehoover/warp-v_includes/1d1023ccf8e7b0a8cf8e8fc4f0a823ebb61008e3/risc-v_defs.tlv'])
m4_include_lib(['https://raw.githubusercontent.com/stevehoover/LF-Building-a-RISC-V-CPU-Core/main/lib/risc-v_shell_lib.tlv'])
//---------------------------------------------------------------------------------
// /====================\
// | Sum 1 to 9 Program |
// \====================/
//
// Program to test RV32I
// Add 1,2,3,...,9 (in that order).
//
// Regs:
// x12 (a2): 10
// x13 (a3): 1..10
// x14 (a4): Sum
//
m4_asm(ADDI, x14, x0, 0) // Initialize sum register a4 with 0
m4_asm(ADDI, x12, x0, 1010) // Store count of 10 in register a2.
m4_asm(ADDI, x13, x0, 1) // Initialize loop count register a3 with 0
// Loop:
m4_asm(ADD, x14, x13, x14) // Incremental summation
m4_asm(ADDI, x13, x13, 1) // Increment loop count by 1
m4_asm(BLT, x13, x12, 1111111111000) // If a3 is less than a2, branch to label named <loop>
m4_asm(ADDI, x0, x0, 1010) // Test for ignored write to reg 0
// Test result value in x14, and set x30 to reflect pass/fail.
m4_asm(ADDI, x30, x14, 111111010100) // Subtract expected value of 44 to set x30 to 1 if and only iff the result is 45 (1 + 2 + ... + 9).
m4_asm(BGE, x0, x0, 0) // Done. Jump to itself (infinite loop). (Up to 20-bit signed immediate plus implicit 0 bit (unlike JALR) provides byte address; last immediate bit should also be 0)
m4_asm_end()
m4_define(['M4_MAX_CYC'], 50)
//---------------------------------------------------------------------------------
\SV
m4_makerchip_module // (Expanded in Nav-TLV pane.)
/* verilator lint_on WIDTH */
\TLV
$reset = *reset;
// Program counter
$next_pc[31:0] = $reset ? 32'b0 :
$taken_br ? $br_tgt_br :
$pc + 4;
$pc[31:0] = >>1$next_pc;
// Instruction memory
`READONLY_MEM($pc, $$instr[31:0])
// Decode
// Decode instruction type
$is_r_instr = $instr[6:2] == 5'b01011 ||
$instr[6:2] == 5'b01100 ||
$instr[6:2] == 5'b01110 ||
$instr[6:2] == 5'b10100;
$is_i_instr = $instr[6:2] ==? 5'b0000x ||
$instr[6:2] ==? 5'b001x0 ||
$instr[6:2] == 5'b11001;
$is_s_instr = $instr[6:2] ==? 5'b0100x;
$is_b_instr = $instr[6:2] == 5'b11000;
$is_u_instr = $instr[6:2] ==? 5'b0x101;
$is_j_instr = $instr[6:2] == 5'b11011;
// Extract instruction fields
$opcode[6:0] = $instr[6:0];
$rd[4:0] = $instr[11:7];
$funct3[2:0] = $instr[14:12];
$rs1[4:0] = $instr[19:15];
$rs2[4:0] = $instr[24:20];
$funct7[6:0] = $instr[31:25];
$imm[31:0] = $is_i_instr ? { {21{$instr[31]}}, $instr[30:20] } :
$is_s_instr ? { {21{$instr[31]}}, $instr[30:25], $instr[11:7] } :
$is_b_instr ? { {20{$instr[31]}}, $instr[7], $instr[30:25],
$instr[11:8], 1'b0 } :
$is_u_instr ? { $instr[31], $instr[30:12], 12'b0 } :
$is_j_instr ? { {12{$instr[31]}}, $instr[19:12], $instr[20],
$instr[30:21], 1'b0 } :
32'b0;
// Calculate instruction fields valids
$rd_valid = $is_r_instr || $is_i_instr || $is_u_instr || $is_j_instr;
$funct3_valid = $is_r_instr || $is_i_instr || $is_s_instr || $is_b_instr;
$rs1_valid = $funct3_valid;
$rs2_valid = $is_r_instr || $is_s_instr || $is_b_instr;
$funct7_valid = $is_r_instr;
$imm_valid = !$is_r_instr;
// Instruction code decoding
$dec_bits[10:0] = { $funct7[5], $funct3, $opcode };
$is_beq = $dec_bits ==? 11'bx_000_1100011;
$is_bne = $dec_bits ==? 11'bx_001_1100011;
$is_blt = $dec_bits ==? 11'bx_100_1100011;
$is_bge = $dec_bits ==? 11'bx_101_1100011;
$is_bltu = $dec_bits ==? 11'bx_110_1100011;
$is_bgeu = $dec_bits ==? 11'bx_111_1100011;
$is_addi = $dec_bits ==? 11'bx_000_0010011;
$is_add = $dec_bits == 11'b0_000_0110011;
// ALU
$result[31:0] = $is_addi ? $src1_value + $imm :
$is_add ? $src1_value + $src2_value :
32'b0;
// Branch logic
$taken_br = $is_beq ? $src1_value == $src2_value :
$is_bne ? $src1_value != $src2_value :
$is_blt ? ($src1_value < $src2_value) ^
($src1_value[31] != $src2_value[31]) :
$is_bge ? ($src1_value >= $src2_value) ^
($src1_value[31] != $src2_value[31]) :
$is_bltu ? $src1_value < $src2_value :
$is_bgeu ? $src1_value >= $src2_value :
1'b0;
$br_tgt_br[31:0] = $pc + $imm;
// Assert these to end simulation (before Makerchip cycle limit).
//*passed
m4+tb();
*failed = *cyc_cnt > M4_MAX_CYC;
`BOGUS_USE($rd $rd_valid $rs1 $rs1_valid $rs2 $rs2_valid
$funct3 $funct3_valid $funct7 $funct7_valid $imm_valid $imm)
m4+rf(32, 32, $reset, $rd != 5'b00000 ? $rd_valid : 1'b0, $rd, $result, $rs1_valid, $rs1, $src1_value, $rs2_valid, $rs2, $src2_value)
//m4+dmem(32, 32, $reset, $addr[4:0], $wr_en, $wr_data[31:0], $rd_en, $rd_data)
m4+cpu_viz()
\SV
endmodule