|
|
- -- ======================================================================
- -- DES encryption/decryption
- -- algorithm according to FIPS 46-3 specification
- -- Copyright (C) 2007 Torsten Meissner
- -------------------------------------------------------------------------
- -- This program is free software; you can redistribute it and/or modify
- -- it under the terms of the GNU General Public License as published by
- -- the Free Software Foundation; either version 2 of the License, or
- -- (at your option) any later version.
-
- -- This program is distributed in the hope that it will be useful,
- -- but WITHOUT ANY WARRANTY; without even the implied warranty of
- -- MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- -- GNU General Public License for more details.
-
- -- You should have received a copy of the GNU General Public License
- -- along with this program; if not, write to the Free Software
- -- Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
- -- ======================================================================
-
-
- library ieee;
- use ieee.std_logic_1164.all;
- use ieee.numeric_std.all;
- use work.des_pkg.all;
-
-
-
- entity des is
- generic (
- design_type : string := "ITER"
- );
- port (
- reset_i : in std_logic; -- async reset
- clk_i : in std_logic; -- clock
- mode_i : in std_logic; -- des-modus: 0 = encrypt, 1 = decrypt
- key_i : in std_logic_vector(0 to 63); -- key input
- data_i : in std_logic_vector(0 to 63); -- data input
- valid_i : in std_logic; -- input key/data valid
- accept_o : out std_logic; -- input accept
- data_o : out std_logic_vector(0 to 63); -- data output
- valid_o : out std_logic; -- output data valid flag
- accept_i : in std_logic -- output accept
- );
- end entity des;
-
-
-
- architecture rtl of des is
-
-
- begin
-
-
- PipeG : if design_type = "PIPE" generate
-
- begin
-
- crypt : process (clk_i, reset_i) is
- -- variables for key calculation
- variable c0 : std_logic_vector(0 to 27) := (others => '0');
- variable c1 : std_logic_vector(0 to 27) := (others => '0');
- variable c2 : std_logic_vector(0 to 27) := (others => '0');
- variable c3 : std_logic_vector(0 to 27) := (others => '0');
- variable c4 : std_logic_vector(0 to 27) := (others => '0');
- variable c5 : std_logic_vector(0 to 27) := (others => '0');
- variable c6 : std_logic_vector(0 to 27) := (others => '0');
- variable c7 : std_logic_vector(0 to 27) := (others => '0');
- variable c8 : std_logic_vector(0 to 27) := (others => '0');
- variable c9 : std_logic_vector(0 to 27) := (others => '0');
- variable c10 : std_logic_vector(0 to 27) := (others => '0');
- variable c11 : std_logic_vector(0 to 27) := (others => '0');
- variable c12 : std_logic_vector(0 to 27) := (others => '0');
- variable c13 : std_logic_vector(0 to 27) := (others => '0');
- variable c14 : std_logic_vector(0 to 27) := (others => '0');
- variable c15 : std_logic_vector(0 to 27) := (others => '0');
- variable c16 : std_logic_vector(0 to 27) := (others => '0');
- variable d0 : std_logic_vector(0 to 27) := (others => '0');
- variable d1 : std_logic_vector(0 to 27) := (others => '0');
- variable d2 : std_logic_vector(0 to 27) := (others => '0');
- variable d3 : std_logic_vector(0 to 27) := (others => '0');
- variable d4 : std_logic_vector(0 to 27) := (others => '0');
- variable d5 : std_logic_vector(0 to 27) := (others => '0');
- variable d6 : std_logic_vector(0 to 27) := (others => '0');
- variable d7 : std_logic_vector(0 to 27) := (others => '0');
- variable d8 : std_logic_vector(0 to 27) := (others => '0');
- variable d9 : std_logic_vector(0 to 27) := (others => '0');
- variable d10 : std_logic_vector(0 to 27) := (others => '0');
- variable d11 : std_logic_vector(0 to 27) := (others => '0');
- variable d12 : std_logic_vector(0 to 27) := (others => '0');
- variable d13 : std_logic_vector(0 to 27) := (others => '0');
- variable d14 : std_logic_vector(0 to 27) := (others => '0');
- variable d15 : std_logic_vector(0 to 27) := (others => '0');
- variable d16 : std_logic_vector(0 to 27) := (others => '0');
- -- key variables
- variable key1 : std_logic_vector(0 to 47) := (others => '0');
- variable key2 : std_logic_vector(0 to 47) := (others => '0');
- variable key3 : std_logic_vector(0 to 47) := (others => '0');
- variable key4 : std_logic_vector(0 to 47) := (others => '0');
- variable key5 : std_logic_vector(0 to 47) := (others => '0');
- variable key6 : std_logic_vector(0 to 47) := (others => '0');
- variable key7 : std_logic_vector(0 to 47) := (others => '0');
- variable key8 : std_logic_vector(0 to 47) := (others => '0');
- variable key9 : std_logic_vector(0 to 47) := (others => '0');
- variable key10 : std_logic_vector(0 to 47) := (others => '0');
- variable key11 : std_logic_vector(0 to 47) := (others => '0');
- variable key12 : std_logic_vector(0 to 47) := (others => '0');
- variable key13 : std_logic_vector(0 to 47) := (others => '0');
- variable key14 : std_logic_vector(0 to 47) := (others => '0');
- variable key15 : std_logic_vector(0 to 47) := (others => '0');
- variable key16 : std_logic_vector(0 to 47) := (others => '0');
- -- variables for left & right data blocks
- variable l0 : std_logic_vector( 0 to 31) := (others => '0');
- variable l1 : std_logic_vector( 0 to 31) := (others => '0');
- variable l2 : std_logic_vector( 0 to 31) := (others => '0');
- variable l3 : std_logic_vector( 0 to 31) := (others => '0');
- variable l4 : std_logic_vector( 0 to 31) := (others => '0');
- variable l5 : std_logic_vector( 0 to 31) := (others => '0');
- variable l6 : std_logic_vector( 0 to 31) := (others => '0');
- variable l7 : std_logic_vector( 0 to 31) := (others => '0');
- variable l8 : std_logic_vector( 0 to 31) := (others => '0');
- variable l9 : std_logic_vector( 0 to 31) := (others => '0');
- variable l10 : std_logic_vector( 0 to 31) := (others => '0');
- variable l11 : std_logic_vector( 0 to 31) := (others => '0');
- variable l12 : std_logic_vector( 0 to 31) := (others => '0');
- variable l13 : std_logic_vector( 0 to 31) := (others => '0');
- variable l14 : std_logic_vector( 0 to 31) := (others => '0');
- variable l15 : std_logic_vector( 0 to 31) := (others => '0');
- variable l16 : std_logic_vector( 0 to 31) := (others => '0');
- variable r0 : std_logic_vector( 0 to 31) := (others => '0');
- variable r1 : std_logic_vector( 0 to 31) := (others => '0');
- variable r2 : std_logic_vector( 0 to 31) := (others => '0');
- variable r3 : std_logic_vector( 0 to 31) := (others => '0');
- variable r4 : std_logic_vector( 0 to 31) := (others => '0');
- variable r5 : std_logic_vector( 0 to 31) := (others => '0');
- variable r6 : std_logic_vector( 0 to 31) := (others => '0');
- variable r7 : std_logic_vector( 0 to 31) := (others => '0');
- variable r8 : std_logic_vector( 0 to 31) := (others => '0');
- variable r9 : std_logic_vector( 0 to 31) := (others => '0');
- variable r10 : std_logic_vector( 0 to 31) := (others => '0');
- variable r11 : std_logic_vector( 0 to 31) := (others => '0');
- variable r12 : std_logic_vector( 0 to 31) := (others => '0');
- variable r13 : std_logic_vector( 0 to 31) := (others => '0');
- variable r14 : std_logic_vector( 0 to 31) := (others => '0');
- variable r15 : std_logic_vector( 0 to 31) := (others => '0');
- variable r16 : std_logic_vector( 0 to 31) := (others => '0');
- -- variables for mode & valid shift registers
- variable mode : std_logic_vector(0 to 16) := (others => '0');
- variable valid : std_logic_vector(0 to 17) := (others => '0');
- begin
- if(reset_i = '0') then
- data_o <= (others => '0');
- valid_o <= '0';
- elsif rising_edge( clk_i ) then
- -- shift registers
- valid(1 to 17) := valid(0 to 16);
- valid(0) := valid_i;
- mode(1 to 16) := mode(0 to 15);
- mode(0) := mode_i;
- -- output stage
- accept_o <= '1';
- valid_o <= valid(17);
- data_o <= ipn( ( r16 & l16 ) );
- -- 16. stage
- if mode(16) = '0' then
- c16 := c15(1 to 27) & c15(0);
- d16 := d15(1 to 27) & d15(0);
- else
- c16 := c15(27) & c15(0 to 26);
- d16 := d15(27) & d15(0 to 26);
- end if;
- key16 := pc2( ( c16 & d16 ) );
- l16 := r15;
- r16 := l15 xor ( f( r15, key16 ) );
- -- 15. stage
- if mode(15) = '0' then
- c15 := c14(2 to 27) & c14(0 to 1);
- d15 := d14(2 to 27) & d14(0 to 1);
- else
- c15 := c14(26 to 27) & c14(0 to 25);
- d15 := d14(26 to 27) & d14(0 to 25);
- end if;
- key15 := pc2( ( c15 & d15 ) );
- l15 := r14;
- r15 := l14 xor ( f( r14, key15 ) );
- -- 14. stage
- if mode(14) = '0' then
- c14 := c13(2 to 27) & c13(0 to 1);
- d14 := d13(2 to 27) & d13(0 to 1);
- else
- c14 := c13(26 to 27) & c13(0 to 25);
- d14 := d13(26 to 27) & d13(0 to 25);
- end if;
- key14 := pc2( ( c14 & d14 ) );
- l14 := r13;
- r14 := l13 xor ( f( r13, key14 ) );
- -- 13. stage
- if mode(13) = '0' then
- c13 := c12(2 to 27) & c12(0 to 1);
- d13 := d12(2 to 27) & d12(0 to 1);
- else
- c13 := c12(26 to 27) & c12(0 to 25);
- d13 := d12(26 to 27) & d12(0 to 25);
- end if;
- key13 := pc2( ( c13 & d13 ) );
- l13 := r12;
- r13 := l12 xor ( f( r12, key13 ) );
- -- 12. stage
- if mode(12) = '0' then
- c12 := c11(2 to 27) & c11(0 to 1);
- d12 := d11(2 to 27) & d11(0 to 1);
- else
- c12 := c11(26 to 27) & c11(0 to 25);
- d12 := d11(26 to 27) & d11(0 to 25);
- end if;
- key12 := pc2( ( c12 & d12 ) );
- l12 := r11;
- r12 := l11 xor ( f( r11, key12 ) );
- -- 11. stage
- if mode(11) = '0' then
- c11 := c10(2 to 27) & c10(0 to 1);
- d11 := d10(2 to 27) & d10(0 to 1);
- else
- c11 := c10(26 to 27) & c10(0 to 25);
- d11 := d10(26 to 27) & d10(0 to 25);
- end if;
- key11 := pc2( ( c11 & d11 ) );
- l11 := r10;
- r11 := l10 xor ( f( r10, key11 ) );
- -- 10. stage
- if mode(10) = '0' then
- c10 := c9(2 to 27) & c9(0 to 1);
- d10 := d9(2 to 27) & d9(0 to 1);
- else
- c10 := c9(26 to 27) & c9(0 to 25);
- d10 := d9(26 to 27) & d9(0 to 25);
- end if;
- key10 := pc2( ( c10 & d10 ) );
- l10 := r9;
- r10 := l9 xor ( f( r9, key10 ) );
- -- 9. stage
- if mode(9) = '0' then
- c9 := c8(1 to 27) & c8(0);
- d9 := d8(1 to 27) & d8(0);
- else
- c9 := c8(27) & c8(0 to 26);
- d9 := d8(27) & d8(0 to 26);
- end if;
- key9 := pc2( ( c9 & d9 ) );
- l9 := r8;
- r9 := l8 xor ( f( r8, key9 ) );
- -- 8. stage
- if mode(8) = '0' then
- c8 := c7(2 to 27) & c7(0 to 1);
- d8 := d7(2 to 27) & d7(0 to 1);
- else
- c8 := c7(26 to 27) & c7(0 to 25);
- d8 := d7(26 to 27) & d7(0 to 25);
- end if;
- key8 := pc2( ( c8 & d8 ) );
- l8 := r7;
- r8 := l7 xor ( f( r7, key8 ) );
- -- 7. stage
- if mode(7) = '0' then
- c7 := c6(2 to 27) & c6(0 to 1);
- d7 := d6(2 to 27) & d6(0 to 1);
- else
- c7 := c6(26 to 27) & c6(0 to 25);
- d7 := d6(26 to 27) & d6(0 to 25);
- end if;
- key7 := pc2( ( c7 & d7 ) );
- l7 := r6;
- r7 := l6 xor ( f( r6, key7 ) );
- -- 6. stage
- if mode(6) = '0' then
- c6 := c5(2 to 27) & c5(0 to 1);
- d6 := d5(2 to 27) & d5(0 to 1);
- else
- c6 := c5(26 to 27) & c5(0 to 25);
- d6 := d5(26 to 27) & d5(0 to 25);
- end if;
- key6 := pc2( ( c6 & d6 ) );
- l6 := r5;
- r6 := l5 xor ( f( r5, key6 ) );
- -- 5. stage
- if mode(5) = '0' then
- c5 := c4(2 to 27) & c4(0 to 1);
- d5 := d4(2 to 27) & d4(0 to 1);
- else
- c5 := c4(26 to 27) & c4(0 to 25);
- d5 := d4(26 to 27) & d4(0 to 25);
- end if;
- key5 := pc2( ( c5 & d5 ) );
- l5 := r4;
- r5 := l4 xor ( f( r4, key5 ) );
- -- 4. stage
- if mode(4) = '0' then
- c4 := c3(2 to 27) & c3(0 to 1);
- d4 := d3(2 to 27) & d3(0 to 1);
- else
- c4 := c3(26 to 27) & c3(0 to 25);
- d4 := d3(26 to 27) & d3(0 to 25);
- end if;
- key4 := pc2( ( c4 & d4 ) );
- l4 := r3;
- r4 := l3 xor ( f( r3, key4 ) );
- -- 3. stage
- if mode(3) = '0' then
- c3 := c2(2 to 27) & c2(0 to 1);
- d3 := d2(2 to 27) & d2(0 to 1);
- else
- c3 := c2(26 to 27) & c2(0 to 25);
- d3 := d2(26 to 27) & d2(0 to 25);
- end if;
- key3 := pc2( ( c3 & d3 ) );
- l3 := r2;
- r3 := l2 xor ( f( r2, key3 ) );
- -- 2. stage
- if mode(2) = '0' then
- c2 := c1(1 to 27) & c1(0);
- d2 := d1(1 to 27) & d1(0);
- else
- c2 := c1(27) & c1(0 to 26);
- d2 := d1(27) & d1(0 to 26);
- end if;
- key2 := pc2( ( c2 & d2 ) );
- l2 := r1;
- r2 := l1 xor ( f( r1, key2 ) );
- -- 1. stage
- if mode(1) = '0' then
- c1 := c0(1 to 27) & c0(0);
- d1 := d0(1 to 27) & d0(0);
- else
- c1 := c0;
- d1 := d0;
- end if;
- key1 := pc2( ( c1 & d1 ) );
- l1 := r0;
- r1 := l0 xor ( f( r0, key1 ) );
- -- input stage
- l0 := ip( data_i )(0 to 31);
- r0 := ip( data_i )(32 to 63);
- c0 := pc1_c( key_i );
- d0 := pc1_d( key_i );
- end if;
- end process crypt;
-
- end generate PipeG;
-
-
- AreaG : if design_type = "ITER" generate
-
- signal s_accept : std_logic;
- signal s_valid : std_logic;
-
- signal s_l : std_logic_vector( 0 to 31);
- signal s_r : std_logic_vector( 0 to 31);
-
- begin
-
- cryptP : process (clk_i, reset_i) is
- variable v_c : std_logic_vector(0 to 27);
- variable v_d : std_logic_vector(0 to 27);
- variable v_key : std_logic_vector(0 to 47);
- variable v_mode : std_logic;
- variable v_rnd_cnt : natural;
- begin
- if(reset_i = '0') then
- v_c := (others => '0');
- v_d := (others => '0');
- v_key := (others => '0');
- s_l <= (others => '0');
- s_r <= (others => '0');
- v_rnd_cnt := 0;
- v_mode := '0';
- s_accept <= '0';
- s_valid <= '0';
- elsif rising_edge(clk_i) then
- case v_rnd_cnt is
-
- -- input stage
- when 0 =>
- s_accept <= '1';
- s_valid <= '0';
- if (valid_i = '1' and s_accept = '1') then
- s_accept <= '0';
- s_valid <= '0';
- s_l <= ip(data_i)(0 to 31);
- s_r <= ip(data_i)(32 to 63);
- v_c := pc1_c(key_i);
- v_d := pc1_d(key_i);
- v_mode := mode_i;
- v_rnd_cnt := v_rnd_cnt + 1;
- end if;
-
- -- stage 1
- when 1 =>
- if (v_mode = '0') then
- v_c := v_c(1 to 27) & v_c(0);
- v_d := v_d(1 to 27) & v_d(0);
- end if;
- v_key := pc2((v_c & v_d));
- s_l <= s_r;
- s_r <= s_l xor (f(s_r, v_key));
- v_rnd_cnt := v_rnd_cnt + 1;
-
- when 2 =>
- if (v_mode = '0') then
- v_c := v_c(1 to 27) & v_c(0);
- v_d := v_d(1 to 27) & v_d(0);
- else
- v_c := v_c(27) & v_c(0 to 26);
- v_d := v_d(27) & v_d(0 to 26);
- end if;
- v_key := pc2((v_c & v_d));
- s_l <= s_r;
- s_r <= s_l xor (f(s_r, v_key));
- v_rnd_cnt := v_rnd_cnt + 1;
-
- when 3 =>
- if (v_mode = '0') then
- v_c := v_c(2 to 27) & v_c(0 to 1);
- v_d := v_d(2 to 27) & v_d(0 to 1);
- else
- v_c := v_c(26 to 27) & v_c(0 to 25);
- v_d := v_d(26 to 27) & v_d(0 to 25);
- end if;
- v_key := pc2( ( v_c & v_d ) );
- s_l <= s_r;
- s_r <= s_l xor ( f( s_r, v_key ) );
- v_rnd_cnt := v_rnd_cnt + 1;
-
- when 4 =>
- if (v_mode = '0') then
- v_c := v_c(2 to 27) & v_c(0 to 1);
- v_d := v_d(2 to 27) & v_d(0 to 1);
- else
- v_c := v_c(26 to 27) & v_c(0 to 25);
- v_d := v_d(26 to 27) & v_d(0 to 25);
- end if;
- v_key := pc2( ( v_c & v_d ) );
- s_l <= s_r;
- s_r <= s_l xor ( f( s_r, v_key ) );
- v_rnd_cnt := v_rnd_cnt + 1;
-
- when 5 =>
- if (v_mode = '0') then
- v_c := v_c(2 to 27) & v_c(0 to 1);
- v_d := v_d(2 to 27) & v_d(0 to 1);
- else
- v_c := v_c(26 to 27) & v_c(0 to 25);
- v_d := v_d(26 to 27) & v_d(0 to 25);
- end if;
- v_key := pc2( ( v_c & v_d ) );
- s_l <= s_r;
- s_r <= s_l xor ( f( s_r, v_key ) );
- v_rnd_cnt := v_rnd_cnt + 1;
-
- when 6 =>
- if (v_mode = '0') then
- v_c := v_c(2 to 27) & v_c(0 to 1);
- v_d := v_d(2 to 27) & v_d(0 to 1);
- else
- v_c := v_c(26 to 27) & v_c(0 to 25);
- v_d := v_d(26 to 27) & v_d(0 to 25);
- end if;
- v_key := pc2( ( v_c & v_d ) );
- s_l <= s_r;
- s_r <= s_l xor ( f( s_r, v_key ) );
- v_rnd_cnt := v_rnd_cnt + 1;
-
- when 7 =>
- if (v_mode = '0') then
- v_c := v_c(2 to 27) & v_c(0 to 1);
- v_d := v_d(2 to 27) & v_d(0 to 1);
- else
- v_c := v_c(26 to 27) & v_c(0 to 25);
- v_d := v_d(26 to 27) & v_d(0 to 25);
- end if;
- v_key := pc2( ( v_c & v_d ) );
- s_l <= s_r;
- s_r <= s_l xor ( f( s_r, v_key ) );
- v_rnd_cnt := v_rnd_cnt + 1;
-
- when 8 =>
- if (v_mode = '0') then
- v_c := v_c(2 to 27) & v_c(0 to 1);
- v_d := v_d(2 to 27) & v_d(0 to 1);
- else
- v_c := v_c(26 to 27) & v_c(0 to 25);
- v_d := v_d(26 to 27) & v_d(0 to 25);
- end if;
- v_key := pc2( ( v_c & v_d ) );
- s_l <= s_r;
- s_r <= s_l xor ( f( s_r, v_key ) );
- v_rnd_cnt := v_rnd_cnt + 1;
-
- when 9 =>
- if (v_mode = '0') then
- v_c := v_c(1 to 27) & v_c(0);
- v_d := v_d(1 to 27) & v_d(0);
- else
- v_c := v_c(27) & v_c(0 to 26);
- v_d := v_d(27) & v_d(0 to 26);
- end if;
- v_key := pc2( ( v_c & v_d ) );
- s_l <= s_r;
- s_r <= s_l xor ( f( s_r, v_key ) );
- v_rnd_cnt := v_rnd_cnt + 1;
-
- when 10 =>
- if (v_mode = '0') then
- v_c := v_c(2 to 27) & v_c(0 to 1);
- v_d := v_d(2 to 27) & v_d(0 to 1);
- else
- v_c := v_c(26 to 27) & v_c(0 to 25);
- v_d := v_d(26 to 27) & v_d(0 to 25);
- end if;
- v_key := pc2( ( v_c & v_d ) );
- s_l <= s_r;
- s_r <= s_l xor ( f( s_r, v_key ) );
- v_rnd_cnt := v_rnd_cnt + 1;
-
- when 11 =>
- -- 11. stage
- if (v_mode = '0') then
- v_c := v_c(2 to 27) & v_c(0 to 1);
- v_d := v_d(2 to 27) & v_d(0 to 1);
- else
- v_c := v_c(26 to 27) & v_c(0 to 25);
- v_d := v_d(26 to 27) & v_d(0 to 25);
- end if;
- v_key := pc2( ( v_c & v_d ) );
- s_l <= s_r;
- s_r <= s_l xor ( f( s_r, v_key ) );
- v_rnd_cnt := v_rnd_cnt + 1;
-
- when 12 =>
- if (v_mode = '0') then
- v_c := v_c(2 to 27) & v_c(0 to 1);
- v_d := v_d(2 to 27) & v_d(0 to 1);
- else
- v_c := v_c(26 to 27) & v_c(0 to 25);
- v_d := v_d(26 to 27) & v_d(0 to 25);
- end if;
- v_key := pc2( ( v_c & v_d ) );
- s_l <= s_r;
- s_r <= s_l xor ( f( s_r, v_key ) );
- v_rnd_cnt := v_rnd_cnt + 1;
-
- when 13 =>
- if (v_mode = '0') then
- v_c := v_c(2 to 27) & v_c(0 to 1);
- v_d := v_d(2 to 27) & v_d(0 to 1);
- else
- v_c := v_c(26 to 27) & v_c(0 to 25);
- v_d := v_d(26 to 27) & v_d(0 to 25);
- end if;
- v_key := pc2( ( v_c & v_d ) );
- s_l <= s_r;
- s_r <= s_l xor ( f( s_r, v_key ) );
- v_rnd_cnt := v_rnd_cnt + 1;
-
- when 14 =>
- if (v_mode = '0') then
- v_c := v_c(2 to 27) & v_c(0 to 1);
- v_d := v_d(2 to 27) & v_d(0 to 1);
- else
- v_c := v_c(26 to 27) & v_c(0 to 25);
- v_d := v_d(26 to 27) & v_d(0 to 25);
- end if;
- v_key := pc2( ( v_c & v_d ) );
- s_l <= s_r;
- s_r <= s_l xor ( f( s_r, v_key ) );
- v_rnd_cnt := v_rnd_cnt + 1;
-
- when 15 =>
- if (v_mode = '0') then
- v_c := v_c(2 to 27) & v_c(0 to 1);
- v_d := v_d(2 to 27) & v_d(0 to 1);
- else
- v_c := v_c(26 to 27) & v_c(0 to 25);
- v_d := v_d(26 to 27) & v_d(0 to 25);
- end if;
- v_key := pc2( ( v_c & v_d ) );
- s_l <= s_r;
- s_r <= s_l xor ( f( s_r, v_key ) );
- v_rnd_cnt := v_rnd_cnt + 1;
-
- when 16 =>
- if (v_mode = '0') then
- v_c := v_c(1 to 27) & v_c(0);
- v_d := v_d(1 to 27) & v_d(0);
- else
- v_c := v_c(27) & v_c(0 to 26);
- v_d := v_d(27) & v_d(0 to 26);
- end if;
- v_key := pc2( ( v_c & v_d ) );
- s_l <= s_r;
- s_r <= s_l xor ( f( s_r, v_key ) );
- v_rnd_cnt := v_rnd_cnt + 1;
-
- when 17 =>
- s_valid <= '1';
- if (s_valid = '1') then
- if(accept_i = '1') then
- s_valid <= '0';
- v_rnd_cnt := 0;
- end if;
- end if;
-
- when others =>
- null;
-
- end case;
- end if;
- end process cryptP;
-
- valid_o <= s_valid;
- accept_o <= s_accept;
- data_o <= ipn(s_r & s_l) when s_valid = '1' else (others => '0');
-
- end generate AreaG;
-
-
- end architecture rtl;
|