Browse Source

Implement key schedule for encryption, finally

master
T. Meissner 5 years ago
parent
commit
28b2cd3856
3 changed files with 45 additions and 59 deletions
  1. +21
    -38
      aes/rtl/vhdl/aes_enc.vhd
  2. +23
    -21
      aes/rtl/vhdl/aes_pkg.vhd
  3. +1
    -0
      aes/sim/vhdl/tb_aes.vhd

+ 21
- 38
aes/rtl/vhdl/aes_enc.vhd View File

@ -48,30 +48,9 @@ end entity aes_enc;
architecture rtl of aes_enc is
-- Fixed round keys for verification until key schedule is implemented
type t_key_array is array (1 to 11) of t_key;
constant c_round_keys : t_key_array := (
(x"2b7e1516", x"28aed2a6", x"abf71588", x"09cf4f3c"),
(x"a0fafe17", x"88542cb1", x"23a33939", x"2a6c7605"),
(x"f2c295f2", x"7a96b943", x"5935807a", x"7359f67f"),
(x"3d80477d", x"4716fe3e", x"1e237e44", x"6d7a883b"),
(x"ef44a541", x"a8525b7f", x"b671253b", x"db0bad00"),
(x"d4d1c6f8", x"7c839d87", x"caf2b8bc", x"11f915bc"),
(x"6d88a37a", x"110b3efd", x"dbf98641", x"ca0093fd"),
(x"4e54f70e", x"5f5fc9f3", x"84a64fb2", x"4ea6dc4f"),
(x"ead27321", x"b58dbad2", x"312bf560", x"7f8d292f"),
(x"ac7766f3", x"19fadc21", x"28d12941", x"575c006e"),
(x"d014f9a8", x"c9ee2589", x"e13f0cc8", x"b6630ca6")
);
signal s_round_key : t_key := (others => (others => '0'));
begin
-- psl default clock is rising_edge(Clk_i);
IterG : if design_type = "ITER" generate
@ -81,14 +60,13 @@ begin
begin
s_round_key <= c_round_keys(s_round) when s_round >= 1 and s_round <= 11 else
(others => (others => '0'));
CryptP : process (reset_i, clk_i) is
variable v_state : t_datatable2d;
variable v_key : t_key;
begin
if (reset_i = '0') then
v_state := (others => (others => (others => '0')));
v_key := (others => (others => '0'));
s_round <= 0;
accept_o <= '0';
data_o <= (others => '0');
@ -101,17 +79,19 @@ begin
if (accept_o = '1' and valid_i = '1') then
accept_o <= '0';
v_state := set_state(data_i);
v_key := (key_i(0 to 31), key_i(32 to 63), key_i(64 to 95), key_i(96 to 127));
s_round <= s_round + 1;
end if;
when 1 =>
v_state := addroundkey(v_state, s_round_key);
v_state := addroundkey(v_state, v_key);
v_key := key_round(v_key, s_round-1);
s_round <= s_round + 1;
when t_enc_rounds'high-1 =>
v_state := subbytes(v_state);
v_state := shiftrow(v_state);
v_state := addroundkey(v_state, s_round_key);
v_state := addroundkey(v_state, v_key);
s_round <= s_round + 1;
-- set data & valid to save one cycle
valid_o <= '1';
@ -130,7 +110,8 @@ begin
v_state := subbytes(v_state);
v_state := shiftrow(v_state);
v_state := mixcolumns(v_state);
v_state := addroundkey(v_state, s_round_key);
v_state := addroundkey(v_state, v_key);
v_key := key_round(v_key, s_round-1);
s_round <= s_round + 1;
end case;
@ -148,21 +129,23 @@ begin
s_data <= data_o when rising_edge(clk_i) else
128x"0" when reset_i = '0';
-- psl cover accept_o;
-- psl assert always (accept_o -> s_round = 0);
default clock is rising_edge(Clk_i);
cover {accept_o};
assert always (accept_o -> s_round = 0);
-- psl cover valid_i and accept_o;
-- psl assert always (valid_i and accept_o -> next not accept_o);
cover {valid_i and accept_o};
assert always (valid_i and accept_o -> next not accept_o);
-- psl cover valid_o;
-- psl assert always (valid_o -> s_round = t_enc_rounds'high);
cover {valid_o};
assert always (valid_o -> s_round = t_enc_rounds'high);
-- psl cover valid_o and accept_i;
-- psl assert always (valid_o and accept_i -> next not valid_o);
cover {valid_o and accept_i};
assert always (valid_o and accept_i -> next not valid_o);
-- psl cover valid_o and not accept_i;
-- psl assert always (valid_o and not accept_i -> next valid_o);
-- psl assert always (valid_o and not accept_i -> next data_o = s_data);
cover {valid_o and not accept_i};
assert always (valid_o and not accept_i -> next valid_o);
assert always (valid_o and not accept_i -> next data_o = s_data);
end block verification;
-- synthesis on


+ 23
- 21
aes/rtl/vhdl/aes_pkg.vhd View File

@ -88,7 +88,7 @@ package aes_pkg is
type t_key is array (0 to 3) of std_logic_vector(31 downto 0);
type t_rcon is array (0 to 9) of t_datatable1d;
type t_rcon is array (0 to 9) of std_logic_vector(7 downto 0);
constant c_sbox : t_stable2d := (
-- 0 1 2 3 4 5 6 7 8 9 A B C D E F
@ -128,17 +128,7 @@ package aes_pkg is
(x"a0", x"e0", x"3b", x"4d", x"ae", x"2a", x"f5", x"b0", x"c8", x"eb", x"bb", x"3c", x"83", x"53", x"99", x"61"), -- E
(x"17", x"2b", x"04", x"7e", x"ba", x"77", x"d6", x"26", x"e1", x"69", x"14", x"63", x"55", x"21", x"0c", x"7d"));-- F
constant c_rcon : t_rcon := (
(x"01", x"00", x"00", x"00"),
(x"02", x"00", x"00", x"00"),
(x"04", x"00", x"00", x"00"),
(x"08", x"00", x"00", x"00"),
(x"10", x"00", x"00", x"00"),
(x"20", x"00", x"00", x"00"),
(x"40", x"00", x"00", x"00"),
(x"80", x"00", x"00", x"00"),
(x"1B", x"00", x"00", x"00"),
(x"36", x"00", x"00", x"00"));
constant c_rcon : t_rcon := (x"01", x"02", x"04", x"08", x"10", x"20", x"40", x"80", x"1B", x"36");
type t_mode is (ENCRYPT, DECRYPT);
@ -161,9 +151,11 @@ package aes_pkg is
function addroundkey (input : in t_datatable2d; key : in t_key) return t_datatable2d;
function subword (input : in t_datatable1d) return t_datatable1d;
function subword (input : in std_logic_vector(31 downto 0)) return std_logic_vector;
function rotword (input : in t_datatable1d) return t_datatable1d;
function rotword (input : in std_logic_vector(31 downto 0)) return std_logic_vector;
function key_round (key : t_key; round : t_enc_rounds) return t_key;
function set_state (input : in std_logic_vector(0 to 127)) return t_datatable2d;
@ -345,22 +337,32 @@ package body aes_pkg is
end function addroundkey;
function subword (input : in t_datatable1d) return t_datatable1d is
variable v_data : t_datatable1d;
function subword (input : in std_logic_vector(31 downto 0)) return std_logic_vector is
variable v_data : std_logic_vector(31 downto 0);
begin
for i in 0 to 3 loop
v_data(i) := c_sbox(to_integer(unsigned(input(i)(7 downto 4))))(to_integer(unsigned(input(i)(3 downto 0))));
end loop;
v_data := bytesub(input(31 downto 24)) & bytesub(input(23 downto 16)) & bytesub(input(15 downto 8)) & bytesub(input(7 downto 0));
return v_data;
end function subword;
function rotword (input : in t_datatable1d) return t_datatable1d is
function rotword (input : in std_logic_vector(31 downto 0)) return std_logic_vector is
begin
return(input(1), input(2), input(3), input(0));
return (input(23 downto 16), input(15 downto 8), input(7 downto 0), input(31 downto 24));
end function rotword;
function key_round (key : t_key; round : t_enc_rounds) return t_key is
variable v_key : t_key;
begin
v_key(3) := subword(rotword(key(3))) xor (c_rcon(round) & x"000000");
v_key(0) := key(0) xor v_key(3);
v_key(1) := v_key(0) xor key(1);
v_key(2) := v_key(1) xor key(2);
v_key(3) := v_key(2) xor key(3);
return v_key;
end function key_round;
function set_state (input : in std_logic_vector(0 to 127)) return t_datatable2d is
variable v_data : t_datatable2d;
begin


+ 1
- 0
aes/sim/vhdl/tb_aes.vhd View File

@ -95,6 +95,7 @@ begin
report "Test encryption";
wait until rising_edge(s_clk);
s_validin_enc <= '1';
s_key <= x"2b7e151628aed2a6abf7158809cf4f3c";
s_datain <= x"3243f6a8885a308d313198a2e0370734";
wait until s_acceptout_enc = '1' and rising_edge(s_clk);
s_validin_enc <= '0';


Loading…
Cancel
Save